3.8.99 \(\int \frac {(a+b x^2)^{3/2} (A+B x^2)}{(e x)^{7/2}} \, dx\) [799]

3.8.99.1 Optimal result
3.8.99.2 Mathematica [C] (verified)
3.8.99.3 Rubi [A] (verified)
3.8.99.4 Maple [A] (verified)
3.8.99.5 Fricas [C] (verification not implemented)
3.8.99.6 Sympy [C] (verification not implemented)
3.8.99.7 Maxima [F]
3.8.99.8 Giac [F]
3.8.99.9 Mupad [F(-1)]

3.8.99.1 Optimal result

Integrand size = 26, antiderivative size = 365 \[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=\frac {12 b (A b+a B) (e x)^{3/2} \sqrt {a+b x^2}}{5 a e^5}+\frac {24 \sqrt {b} (A b+a B) \sqrt {e x} \sqrt {a+b x^2}}{5 e^4 \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {2 (A b+a B) \left (a+b x^2\right )^{3/2}}{a e^3 \sqrt {e x}}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}-\frac {24 \sqrt [4]{a} \sqrt [4]{b} (A b+a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{5 e^{7/2} \sqrt {a+b x^2}}+\frac {12 \sqrt [4]{a} \sqrt [4]{b} (A b+a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{5 e^{7/2} \sqrt {a+b x^2}} \]

output
-2/5*A*(b*x^2+a)^(5/2)/a/e/(e*x)^(5/2)-2*(A*b+B*a)*(b*x^2+a)^(3/2)/a/e^3/( 
e*x)^(1/2)+12/5*b*(A*b+B*a)*(e*x)^(3/2)*(b*x^2+a)^(1/2)/a/e^5+24/5*(A*b+B* 
a)*b^(1/2)*(e*x)^(1/2)*(b*x^2+a)^(1/2)/e^4/(a^(1/2)+x*b^(1/2))-24/5*a^(1/4 
)*b^(1/4)*(A*b+B*a)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2) 
^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticE(sin(2* 
arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/ 
2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/e^(7/2)/(b*x^2+a)^(1/2)+12/5*a 
^(1/4)*b^(1/4)*(A*b+B*a)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2) 
))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))*EllipticF(s 
in(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x* 
b^(1/2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/e^(7/2)/(b*x^2+a)^(1/2)
 
3.8.99.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.23 \[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=\frac {2 x \sqrt {a+b x^2} \left (-\frac {A \left (a+b x^2\right )^2}{a}-\frac {5 (A b+a B) x^2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{4},\frac {3}{4},-\frac {b x^2}{a}\right )}{\sqrt {1+\frac {b x^2}{a}}}\right )}{5 (e x)^{7/2}} \]

input
Integrate[((a + b*x^2)^(3/2)*(A + B*x^2))/(e*x)^(7/2),x]
 
output
(2*x*Sqrt[a + b*x^2]*(-((A*(a + b*x^2)^2)/a) - (5*(A*b + a*B)*x^2*Hypergeo 
metric2F1[-3/2, -1/4, 3/4, -((b*x^2)/a)])/Sqrt[1 + (b*x^2)/a]))/(5*(e*x)^( 
7/2))
 
3.8.99.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 381, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {359, 247, 248, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx\)

\(\Big \downarrow \) 359

\(\displaystyle \frac {(a B+A b) \int \frac {\left (b x^2+a\right )^{3/2}}{(e x)^{3/2}}dx}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \int \sqrt {e x} \sqrt {b x^2+a}dx}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 248

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \left (\frac {2}{5} a \int \frac {\sqrt {e x}}{\sqrt {b x^2+a}}dx+\frac {2 (e x)^{3/2} \sqrt {a+b x^2}}{5 e}\right )}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \left (\frac {4 a \int \frac {e x}{\sqrt {b x^2+a}}d\sqrt {e x}}{5 e}+\frac {2 (e x)^{3/2} \sqrt {a+b x^2}}{5 e}\right )}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \left (\frac {4 a \left (\frac {\sqrt {a} e \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b}}-\frac {\sqrt {a} e \int \frac {\sqrt {a} e-\sqrt {b} e x}{\sqrt {a} e \sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b}}\right )}{5 e}+\frac {2 (e x)^{3/2} \sqrt {a+b x^2}}{5 e}\right )}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \left (\frac {4 a \left (\frac {\sqrt {a} e \int \frac {1}{\sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b}}-\frac {\int \frac {\sqrt {a} e-\sqrt {b} e x}{\sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b}}\right )}{5 e}+\frac {2 (e x)^{3/2} \sqrt {a+b x^2}}{5 e}\right )}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \left (\frac {4 a \left (\frac {\sqrt [4]{a} \sqrt {e} \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\int \frac {\sqrt {a} e-\sqrt {b} e x}{\sqrt {b x^2+a}}d\sqrt {e x}}{\sqrt {b}}\right )}{5 e}+\frac {2 (e x)^{3/2} \sqrt {a+b x^2}}{5 e}\right )}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {(a B+A b) \left (\frac {6 b \left (\frac {4 a \left (\frac {\sqrt [4]{a} \sqrt {e} \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^2}}-\frac {\frac {\sqrt [4]{a} \sqrt {e} \left (\sqrt {a} e+\sqrt {b} e x\right ) \sqrt {\frac {a e^2+b e^2 x^2}{\left (\sqrt {a} e+\sqrt {b} e x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{\sqrt [4]{b} \sqrt {a+b x^2}}-\frac {e^2 \sqrt {e x} \sqrt {a+b x^2}}{\sqrt {a} e+\sqrt {b} e x}}{\sqrt {b}}\right )}{5 e}+\frac {2 (e x)^{3/2} \sqrt {a+b x^2}}{5 e}\right )}{e^2}-\frac {2 \left (a+b x^2\right )^{3/2}}{e \sqrt {e x}}\right )}{a e^2}-\frac {2 A \left (a+b x^2\right )^{5/2}}{5 a e (e x)^{5/2}}\)

input
Int[((a + b*x^2)^(3/2)*(A + B*x^2))/(e*x)^(7/2),x]
 
output
(-2*A*(a + b*x^2)^(5/2))/(5*a*e*(e*x)^(5/2)) + ((A*b + a*B)*((-2*(a + b*x^ 
2)^(3/2))/(e*Sqrt[e*x]) + (6*b*((2*(e*x)^(3/2)*Sqrt[a + b*x^2])/(5*e) + (4 
*a*(-((-((e^2*Sqrt[e*x]*Sqrt[a + b*x^2])/(Sqrt[a]*e + Sqrt[b]*e*x)) + (a^( 
1/4)*Sqrt[e]*(Sqrt[a]*e + Sqrt[b]*e*x)*Sqrt[(a*e^2 + b*e^2*x^2)/(Sqrt[a]*e 
 + Sqrt[b]*e*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e] 
)], 1/2])/(b^(1/4)*Sqrt[a + b*x^2]))/Sqrt[b]) + (a^(1/4)*Sqrt[e]*(Sqrt[a]* 
e + Sqrt[b]*e*x)*Sqrt[(a*e^2 + b*e^2*x^2)/(Sqrt[a]*e + Sqrt[b]*e*x)^2]*Ell 
ipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(2*b^(3/4)*S 
qrt[a + b*x^2])))/(5*e)))/e^2))/(a*e^2)
 

3.8.99.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 248
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 2*p + 1))), x] + Simp[2*a*(p/(m + 2*p + 1)) 
  Int[(c*x)^m*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] && GtQ[ 
p, 0] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 359
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + 
Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)* 
(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] 
&& LtQ[m, -1] &&  !ILtQ[p, -1]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
3.8.99.4 Maple [A] (verified)

Time = 3.07 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.66

method result size
risch \(-\frac {2 \sqrt {b \,x^{2}+a}\, \left (-b B \,x^{4}+7 A b \,x^{2}+5 B a \,x^{2}+A a \right )}{5 x^{2} e^{3} \sqrt {e x}}+\frac {12 \left (A b +B a \right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) \sqrt {\left (b \,x^{2}+a \right ) e x}}{5 \sqrt {b e \,x^{3}+a e x}\, e^{3} \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(242\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (-\frac {2 a A \sqrt {b e \,x^{3}+a e x}}{5 e^{4} x^{3}}-\frac {2 \left (b e \,x^{2}+a e \right ) \left (7 A b +5 B a \right )}{5 e^{4} \sqrt {x \left (b e \,x^{2}+a e \right )}}+\frac {2 b B x \sqrt {b e \,x^{3}+a e x}}{5 e^{4}}+\frac {\left (\frac {b \left (A b +2 B a \right )}{e^{3}}+\frac {b \left (7 A b +5 B a \right )}{5 e^{3}}-\frac {3 b B a}{5 e^{3}}\right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{b \sqrt {b e \,x^{3}+a e x}}\right )}{\sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(307\)
default \(\frac {\frac {24 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, E\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}}{5}-\frac {12 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}}{5}+\frac {24 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, E\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2} x^{2}}{5}-\frac {12 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a^{2} x^{2}}{5}+\frac {2 b^{2} B \,x^{6}}{5}-\frac {14 A \,b^{2} x^{4}}{5}-\frac {8 B a b \,x^{4}}{5}-\frac {16 a A b \,x^{2}}{5}-2 a^{2} B \,x^{2}-\frac {2 a^{2} A}{5}}{x^{2} \sqrt {b \,x^{2}+a}\, e^{3} \sqrt {e x}}\) \(422\)

input
int((b*x^2+a)^(3/2)*(B*x^2+A)/(e*x)^(7/2),x,method=_RETURNVERBOSE)
 
output
-2/5*(b*x^2+a)^(1/2)*(-B*b*x^4+7*A*b*x^2+5*B*a*x^2+A*a)/x^2/e^3/(e*x)^(1/2 
)+12/5*(A*b+B*a)*(-a*b)^(1/2)*((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(- 
2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-x/(-a*b)^(1/2)*b)^(1/2)/(b*e* 
x^3+a*e*x)^(1/2)*(-2*(-a*b)^(1/2)/b*EllipticE(((x+(-a*b)^(1/2)/b)/(-a*b)^( 
1/2)*b)^(1/2),1/2*2^(1/2))+(-a*b)^(1/2)/b*EllipticF(((x+(-a*b)^(1/2)/b)/(- 
a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))/e^3*((b*x^2+a)*e*x)^(1/2)/(e*x)^(1/2)/(b 
*x^2+a)^(1/2)
 
3.8.99.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.23 \[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=-\frac {2 \, {\left (12 \, {\left (B a + A b\right )} \sqrt {b e} x^{3} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) - {\left (B b x^{4} - {\left (5 \, B a + 7 \, A b\right )} x^{2} - A a\right )} \sqrt {b x^{2} + a} \sqrt {e x}\right )}}{5 \, e^{4} x^{3}} \]

input
integrate((b*x^2+a)^(3/2)*(B*x^2+A)/(e*x)^(7/2),x, algorithm="fricas")
 
output
-2/5*(12*(B*a + A*b)*sqrt(b*e)*x^3*weierstrassZeta(-4*a/b, 0, weierstrassP 
Inverse(-4*a/b, 0, x)) - (B*b*x^4 - (5*B*a + 7*A*b)*x^2 - A*a)*sqrt(b*x^2 
+ a)*sqrt(e*x))/(e^4*x^3)
 
3.8.99.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 23.28 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.58 \[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=\frac {A a^{\frac {3}{2}} \Gamma \left (- \frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, - \frac {1}{2} \\ - \frac {1}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac {7}{2}} x^{\frac {5}{2}} \Gamma \left (- \frac {1}{4}\right )} + \frac {A \sqrt {a} b \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac {7}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} + \frac {B a^{\frac {3}{2}} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac {7}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} + \frac {B \sqrt {a} b x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right )} \]

input
integrate((b*x**2+a)**(3/2)*(B*x**2+A)/(e*x)**(7/2),x)
 
output
A*a**(3/2)*gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), b*x**2*exp_polar(I*pi) 
/a)/(2*e**(7/2)*x**(5/2)*gamma(-1/4)) + A*sqrt(a)*b*gamma(-1/4)*hyper((-1/ 
2, -1/4), (3/4,), b*x**2*exp_polar(I*pi)/a)/(2*e**(7/2)*sqrt(x)*gamma(3/4) 
) + B*a**(3/2)*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**2*exp_polar(I* 
pi)/a)/(2*e**(7/2)*sqrt(x)*gamma(3/4)) + B*sqrt(a)*b*x**(3/2)*gamma(3/4)*h 
yper((-1/2, 3/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*e**(7/2)*gamma(7/4) 
)
 
3.8.99.7 Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} {\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\left (e x\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((b*x^2+a)^(3/2)*(B*x^2+A)/(e*x)^(7/2),x, algorithm="maxima")
 
output
integrate((B*x^2 + A)*(b*x^2 + a)^(3/2)/(e*x)^(7/2), x)
 
3.8.99.8 Giac [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} {\left (b x^{2} + a\right )}^{\frac {3}{2}}}{\left (e x\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((b*x^2+a)^(3/2)*(B*x^2+A)/(e*x)^(7/2),x, algorithm="giac")
 
output
integrate((B*x^2 + A)*(b*x^2 + a)^(3/2)/(e*x)^(7/2), x)
 
3.8.99.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{(e x)^{7/2}} \, dx=\int \frac {\left (B\,x^2+A\right )\,{\left (b\,x^2+a\right )}^{3/2}}{{\left (e\,x\right )}^{7/2}} \,d x \]

input
int(((A + B*x^2)*(a + b*x^2)^(3/2))/(e*x)^(7/2),x)
 
output
int(((A + B*x^2)*(a + b*x^2)^(3/2))/(e*x)^(7/2), x)